

Inferentialist Resource Semantics

Alexander V. Gheorghiu¹ Tao Gu¹ David J. Pym¹,²

¹University College London, UK

²Institute of Philosophy, University of London, UK

Mathematical Foundations of Programming Semantics University of Oxford July 2024

Outline

1 Resource Semantics

- 2 Proof-theoretic Semantics
- 3 Inferentialist Resource Semantics
- 4 Conclusion

Table of Contents

1 Resource Semantics

- 2 Proof-theoretic Semantics
- 3 Inferentialist Resource Semantics
- 4 Conclusion

With a little abstraction:

■ a collection of interconnected *locations*,

- a collection of interconnected *locations*,
- at which are situated *resources*,

- a collection of interconnected *locations*,
- at which are situated *resources*,
- relative to which *processes* execute

- a collection of interconnected *locations*,
- at which are situated *resources*,
- relative to which *processes* execute

- a collection of interconnected *locations*,
- at which are situated *resources*,
- relative to which *processes* execute consuming, creating, moving, combining, and otherwise manipulating resources as they evolve, so delivering the system's services.

With a little abstraction:

- a collection of interconnected *locations*,
- at which are situated resources,
- relative to which processes execute consuming, creating, moving, combining, and otherwise manipulating resources as they evolve, so delivering the system's services.

Example

There are many including, for example, hospitals, universities, computers, communication networks (e.g., the internet), and more.

Example: Vending Machine

■ *locations*: customer, vending machine

Figure: Reykjavík Univsersity

Example: Vending Machine

- locations: customer, vending machine
- resources: money (i.e., kr in Iceland), chocolate bars

Figure: Reykjavík Univsersity

Example: Vending Machine

- locations: customer, vending machine
- *resources*: money (i.e., kr in Iceland), chocolate bars
- *processes* (@C): 200kr is consumed, 1 chocolate bar is produced.

Figure: Reykjavík Univsersity

How can we reason about such systems?

How can we reason about such systems?

Definition (Resource Semantics)

A resource semantics for a system of logic is

- an interpretation of its formulae as assertions about states of processes, and
- expressed in terms of the resources manipulated by those processes.

How can we reason about such systems?

Definition (Resource Semantics)

A resource semantics for a system of logic is

- an interpretation of its formulae as assertions about states of processes, and
- expressed in terms of the resources manipulated by those processes.

This definition requires a few notes:

How can we reason about such systems?

Definition (Resource Semantics)

A resource semantics for a system of logic is

- an interpretation of its formulae as assertions about states of processes, and
- expressed in terms of the resources manipulated by those processes.

This definition requires a few notes:

we intend no restriction on the assertions — e.g., permit 'higher-order' assertions about state transitions.

How can we reason about such systems?

Definition (Resource Semantics)

A resource semantics for a system of logic is

- an interpretation of its formulae as assertions about states of processes, and
- expressed in terms of the resources manipulated by those processes.

This definition requires a few notes:

- we intend no restriction on the assertions e.g., permit 'higher-order' assertions about state transitions.
- we intend to express all kinds of processes relevant to the domain

How can we reason about such systems?

Definition (Resource Semantics)

A resource semantics for a system of logic is

- an interpretation of its formulae as assertions about states of processes, and
- expressed in terms of the resources manipulated by those processes.

This definition requires a few notes:

- we intend no restriction on the assertions e.g., permit 'higher-order' assertions about state transitions.
- we intend to express all kinds of processes relevant to the domain
- we require accounting for counting, composition, comparison, sharing, and separation of resources

Gheorghiu, Gu, Pym (UCL)

Example (Resource Interpretations)

number-of-uses interpretation of linear logic — proof-theoretic

Example (Resource Interpretations)

- number-of-uses interpretation of linear logic proof-theoretic
- sharing/separation interpretation of the logic of bunched implications — model-theoretic (semantic)

Example (Resource Interpretations)

- number-of-uses interpretation of linear logic proof-theoretic
- sharing/separation interpretation of the logic of bunched implications — model-theoretic (semantic)

Example (Resource Interpretations)

- number-of-uses interpretation of linear logic proof-theoretic
- sharing/separation interpretation of the logic of bunched implications — model-theoretic (semantic)

Example (Resource Interpretations)

- number-of-uses interpretation of linear logic proof-theoretic
- sharing/separation interpretation of the logic of bunched implications — model-theoretic (semantic)

While useful, they have some limitations:

number-of-uses reading describes the dynamics of the resources
 — consumption, creation, movement of resources

Example (Resource Interpretations)

- number-of-uses interpretation of linear logic proof-theoretic
- sharing/separation interpretation of the logic of bunched implications — model-theoretic (semantic)

- number-of-uses reading describes the dynamics of the resources
 consumption, creation, movement of resources
- sharing/separation interpretation describes the structure of the system — sharing, separation, and comparison of resources

Example (Resource Interpretations)

- number-of-uses interpretation of linear logic proof-theoretic
- sharing/separation interpretation of the logic of bunched implications — model-theoretic (semantic)

- number-of-uses reading describes the dynamics of the resources
 consumption, creation, movement of resources
- sharing/separation interpretation describes the structure of the system — sharing, separation, and comparison of resources

Example (Resource Interpretations)

- number-of-uses interpretation of linear logic proof-theoretic
- sharing/separation interpretation of the logic of bunched implications — model-theoretic (semantic)

- number-of-uses reading describes the dynamics of the resources
 consumption, creation, movement of resources
- sharing/separation interpretation describes the structure of the system — sharing, separation, and comparison of resources
 Hence, we need a unified approach!

We desire a judgment

$$\Gamma \Vdash_{\mathscr{B}}^{\mathcal{S}(\cdot)} \varphi$$

in which

 $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system

We desire a judgment

$$\Gamma \Vdash^{\mathcal{S}(\cdot)}_{\mathscr{B}} \varphi$$

in which

- $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes

We desire a judgment

$$\Gamma \Vdash^{\mathcal{S}(\cdot)}_{\mathscr{B}} \varphi$$

in which

- $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes
- S(·) is some 'contextual' collection of resources available to the system

We desire a judgment

$$\Gamma \Vdash_{\mathscr{B}}^{\mathcal{S}(\cdot)} \varphi$$

in which

- $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes
- *S*(·) is some 'contextual' collection of resources available to the system
- *B*, *C* are models of the systems that is, ⊢^U_C Γ says that *C* is a model of policy Γ when supplied with resource *U*.

 $\Gamma \Vdash_{\mathscr{B}}^{\mathcal{S}(\cdot)} \phi$

It should be interpreted as follows:

If policy Γ were to be executed with contextual resource $S(\cdot)$ based on the model \mathcal{B} , then the result state would satisfy φ .

Moreover, it should be able to express both number-of-uses style interpretations and sharing/separation style interpretations simultaneously.

 $\Gamma \Vdash_{\mathscr{B}}^{\mathcal{S}(\cdot)} \phi$

It should be interpreted as follows:

If policy Γ were to be executed with contextual resource $S(\cdot)$ based on the model \mathscr{B} , then the result state would satisfy φ .

Moreover, it should be able to express both number-of-uses style interpretations and sharing/separation style interpretations simultaneously.

To this end, we use **proof-theoretic semantics**.

Table of Contents

1 Resource Semantics

- 2 Proof-theoretic Semantics
- 3 Inferentialist Resource Semantics
- 4 Conclusion

Inferentialism

Inferentialism — Brandom

A theory of meaning based on 'meaning-as-use'; in particular, meaning emerges from the rules of inference.

Inferentialism

Inferentialism — Brandom

A theory of meaning based on 'meaning-as-use'; in particular, meaning emerges from the rules of inference.

Proof-theoretic Semantics

A mathematical formulation of inferentialism based on modern formal notions of proof — e.g., natural deduction and sequent calculi.

denotationalism

inferentialism

- denotationalism
- model-theoretic semantics

- inferentialism
- proof-theoretic semantics

- denotationalism
- model-theoretic semantics
- meaning in terms of truth

- inferentialism
- proof-theoretic semantics
- meaning based on proofs

- denotationalism
- model-theoretic semantics
- meaning in terms of truth
- e.g., Kripke semantics

- inferentialism
- proof-theoretic semantics
- meaning based on proofs

- denotationalism
- model-theoretic semantics
- meaning in terms of truth
- e.g., Kripke semantics

- inferentialism
- proof-theoretic semantics
- meaning based on proofs
- e.g., base-extension semantics

- denotationalism
- model-theoretic semantics
- meaning in terms of truth
- e.g., Kripke semantics

- inferentialism
- proof-theoretic semantics
- meaning based on proofs
- e.g., base-extension semantics

Soundness & Completenes

The word 'proof' here refers to a *pre-logical* notion of proof.

- denotationalism
- model-theoretic semantics
- meaning in terms of truth
- e.g., Kripke semantics

- inferentialism
- proof-theoretic semantics
- meaning based on proofs
- e.g., base-extension semantics

Soundness & Completenes

The word 'proof' here refers to a *pre-logical* notion of proof. Thus, the relationship between semantics and provability remains the same as it has always been:

- denotationalism
- model-theoretic semantics
- meaning in terms of truth
- e.g., Kripke semantics

- inferentialism
- proof-theoretic semantics
- meaning based on proofs
- e.g., base-extension semantics

Soundness & Completenes

The word 'proof' here refers to a *pre-logical* notion of proof. Thus, the relationship between semantics and provability remains the same as it has always been: soundness and completeness are desirable features of formal systems.

■ Begin with pre-logical proof systems *B* — called *bases*

- Begin with pre-logical proof systems *B* called *bases*
- Define a derivability relation $\vdash_{\mathscr{B}}$

- Begin with pre-logical proof systems *𝔅* called *bases*
- Define a derivability relation $\vdash_{\mathscr{B}}$
- Give clauses defining the logical constants in the usual way see examples below.

- Begin with pre-logical proof systems *𝔅* called *bases*
- Define a derivability relation $\vdash_{\mathscr{B}}$
- Give clauses defining the logical constants in the usual way see examples below.

- Begin with pre-logical proof systems ℬ called bases
- Define a derivability relation $\vdash_{\mathscr{B}}$
- Give clauses defining the logical constants in the usual way see examples below.

While B-eS sounds like Kripke semantics, it is **not**. Its relationship is an open problem. Let's talk later!

Example: Intuitionistic Propositional Logic

 The sets *B* essentially contain Harrop formulae expressed as rules — e.g.,

$$\frac{p}{s} = \frac{p}{r} \frac{q}{s} = \frac{t}{s}$$

Example: Intuitionistic Propositional Logic

 The sets *B* essentially contain Harrop formulae expressed as rules — e.g.,

$$\frac{p}{s} = \frac{p}{r} \frac{q}{s} = \frac{t}{s}$$

■ Validity in *B* is defined in the standard way

Example: Intuitionistic Propositional Logic

 The sets *B* essentially contain Harrop formulae expressed as rules — e.g.,

$$\frac{p}{s} = \frac{p}{r} \frac{q}{s} = \frac{t}{s}$$

■ Validity in *B* is defined in the standard way

Clauses include the following:

$$\begin{array}{ccccc} \Vdash_{\mathscr{B}} \rho & \text{iff} & \vdash_{\mathscr{B}} \rho & (\text{Atom}) \\ \Vdash_{\mathscr{B}} \phi \wedge \psi & \text{iff} & \Vdash_{\mathscr{B}} \phi \text{ and} \Vdash_{\mathscr{B}} \psi & (\wedge) \\ \Vdash_{\mathscr{B}} \phi \to \psi & \text{iff} & \phi \Vdash_{\mathscr{B}} \psi & (\wedge) \\ \Gamma \Vdash_{\mathscr{B}} \phi & \text{iff} & \forall \mathscr{C} \supseteq \mathscr{B}(\Vdash_{\mathscr{C}} \Gamma \Longrightarrow \Vdash_{\mathscr{C}} \phi) & (\text{Inf}) \end{array}$$

Proof-theoretic Semantics for Substructural Logic

We need the setup to allow for a more refined account of formula management.

Proof-theoretic Semantics for Substructural Logic

We need the setup to allow for a more refined account of formula management.

Example

In the pre-logical notion of proof:

- $\blacksquare p \vdash_{\mathscr{B}} p \text{ should hold, but}$
- $p, q \vdash_{\mathscr{B}} p$ should not.

Proof-theoretic Semantics for Substructural Logic

We need the setup to allow for a more refined account of formula management.

Example

In the pre-logical notion of proof:

- $\blacksquare p \vdash_{\mathscr{B}} p \text{ should hold, but}$
- $p, q \vdash_{\mathscr{B}} p$ should not.

This is a straightforward modification! We elide the details to progress with the modelling — see the paper.

■ We require this semantics to be context-sensitive.

- We require this semantics to be context-sensitive.
- Therefore, we enrich support \Vdash with a multiset of atoms T 'atomic resources'.

- We require this semantics to be context-sensitive.
- Therefore, we enrich support \Vdash with a multiset of atoms T 'atomic resources'.
- This enables us to have a refined account of multiplicative conjunction!

- We require this semantics to be context-sensitive.
- Therefore, we enrich support \Vdash with a multiset of atoms T 'atomic resources'.
- This enables us to have a refined account of multiplicative conjunction!

- We require this semantics to be context-sensitive.
- Therefore, we enrich support I⊢ with a multiset of atoms *T* 'atomic resources'.
- This enables us to have a refined account of multiplicative conjunction!

Here are some clauses:

$$\begin{array}{cccc} \Vdash_{\mathscr{B}}^{S} \varphi \otimes \psi & \text{iff} & \forall \mathscr{C} \supseteq \mathscr{B} \forall T \forall p (\varphi, \psi \Vdash_{\mathscr{B}}^{T} p \Longrightarrow \Vdash_{\mathscr{B}}^{S, T} p) & (\otimes) \\ \Vdash_{\mathscr{B}}^{S} \varphi \longrightarrow \psi & \text{iff} & \varphi \Vdash_{\mathscr{B}}^{S} \psi & (\multimap) \\ \Gamma \Vdash_{\mathscr{B}}^{S} \varphi & \text{iff} & \forall \mathscr{C} \supseteq \mathscr{B} \forall T (\Vdash_{\mathscr{C}}^{T} \Gamma \Longrightarrow \Vdash_{\mathscr{C}}^{S, T} \varphi) & (\text{Inf}) \\ \Vdash_{\mathscr{B}}^{S} \Gamma_{1}, \Gamma_{2} & \text{iff} & \exists T_{1}, T_{2}(S = T_{1}, T_{2}, \Vdash_{\mathscr{B}}^{T_{1}} \Gamma_{1} \text{ and} \Vdash_{\mathscr{B}}^{T_{2}} \Gamma_{2}) & (9) \end{array}$$

- We require this semantics to be context-sensitive.
- Therefore, we enrich support I⊢ with a multiset of atoms *T* 'atomic resources'.
- This enables us to have a refined account of multiplicative conjunction!

Here are some clauses:

$$\begin{array}{cccc} \Vdash_{\mathscr{B}}^{S} \varphi \otimes \psi & \text{iff} & \forall \mathscr{C} \supseteq \mathscr{B} \forall T \forall p (\varphi, \psi \Vdash_{\mathscr{B}}^{T} p \Longrightarrow \Vdash_{\mathscr{B}}^{S, T} p) & (\otimes) \\ \Vdash_{\mathscr{B}}^{S} \varphi \longrightarrow \psi & \text{iff} & \varphi \Vdash_{\mathscr{B}}^{S} \psi & (\multimap) \\ \Gamma \Vdash_{\mathscr{B}}^{S} \varphi & \text{iff} & \forall \mathscr{C} \supseteq \mathscr{B} \forall T (\Vdash_{\mathscr{C}}^{T} \Gamma \Longrightarrow \Vdash_{\mathscr{C}}^{S, T} \varphi) & (\text{Inf}) \\ \Vdash_{\mathscr{B}}^{S} \Gamma_{1}, \Gamma_{2} & \text{iff} & \exists T_{1}, T_{2}(S = T_{1}, T_{2}, \Vdash_{\mathscr{B}}^{T_{1}} \Gamma_{1} \text{ and} \Vdash_{\mathscr{B}}^{T_{2}} \Gamma_{2}) & (,) \end{array}$$

This is all quite intuitive — e.g., (\otimes) recalls \otimes_{E} ,

$$\frac{\varphi \otimes \psi \quad [\varphi, \psi]}{\rho} \otimes_{\mathsf{E}}$$

Generalize the treatment of ILL

- Generalize the treatment of ILL
- We have *primitive* additive and multiplicative conjunctions and implications — this is useful for modelling.

- Generalize the treatment of ILL
- We have *primitive* additive and multiplicative conjunctions and implications — this is useful for modelling.
- Collections of formulae are now 'bunches' e.g., $a_{9}(b_{3}c)$

- Generalize the treatment of ILL
- We have *primitive* additive and multiplicative conjunctions and implications — this is useful for modelling.
- Collections of formulae are now 'bunches' e.g., $a_{9}(b_{3}c)$
- We enrich support I⊢ with bunches of atoms *S* 'atomic resources'

- Generalize the treatment of ILL
- We have *primitive* additive and multiplicative conjunctions and implications — this is useful for modelling.
- Collections of formulae are now 'bunches' e.g., $a_{9}(b_{3}c)$
- We enrich support I⊢ with bunches of atoms *S* 'atomic resources'

- Generalize the treatment of ILL
- We have *primitive* additive and multiplicative conjunctions and implications — this is useful for modelling.
- Collections of formulae are now 'bunches' e.g., $a_{\mathfrak{g}}(b_{\mathfrak{g}}c)$
- We enrich support \Vdash with bunches of atoms *S* 'atomic resources' Here are some clauses:

$$\begin{array}{cccc} \Vdash^{S}_{\mathscr{B}} \varphi \ast \psi & \text{iff} & \forall \mathscr{C} \supseteq \mathscr{B} \forall T(\cdot) \forall p \left(\varphi, \psi \Vdash^{T(\cdot)}_{\mathscr{B}} p \Longrightarrow \Vdash^{T(S)}_{\mathscr{B}} p\right) & (\ast) \\ \Vdash^{S}_{\mathscr{B}} \varphi \twoheadrightarrow \psi & \text{iff} & \varphi \Vdash^{S_{9}(\cdot)}_{\mathscr{B}} \psi & (\twoheadrightarrow) \\ \Gamma \Vdash^{S}_{\mathscr{B}} \varphi & \text{iff} & \forall \mathscr{C} \supseteq \mathscr{B} \forall T \left(\Vdash^{T}_{\mathscr{C}} \Gamma \Longrightarrow \Vdash^{S(T)}_{\mathscr{C}} \varphi \right) & (\text{Inf}) \end{array}$$

- Generalize the treatment of ILL
- We have *primitive* additive and multiplicative conjunctions and implications — this is useful for modelling.
- Collections of formulae are now 'bunches' e.g., $a_{\mathfrak{g}}(b_{\mathfrak{g}}c)$
- We enrich support \Vdash with bunches of atoms *S* 'atomic resources' Here are some clauses:

Table of Contents

1 Resource Semantics

2 Proof-theoretic Semantics

3 Inferentialist Resource Semantics

4 Conclusion

Modelling with Proof-theoretic Semantics I In general, for the base-extension semantics for some logic — e.g., IPL, ILL, BI:

 $\Gamma \Vdash_{\mathscr{B}}^{S(\cdot)} \phi \quad \text{iff} \quad \forall \mathscr{C} \supseteq \mathscr{B}, \forall U \in \mathbb{R}(\mathbb{A}), \text{if} \Vdash_{\mathscr{C}}^{U} \Gamma, \text{then} \Vdash_{\mathscr{C}}^{S(U)} \phi \quad \text{(Gen-Inf)}$

This admits the kind of resource semantics we desire. Recall:

• ϕ is an assertion describing (a possible state of) the system

Modelling with Proof-theoretic Semantics I In general, for the base-extension semantics for some logic — e.g., IPL, ILL, BI:

$$\Gamma \Vdash_{\mathscr{B}}^{\mathcal{S}(\cdot)} \phi \quad \text{iff} \quad \forall \mathscr{C} \supseteq \mathscr{B}, \forall U \in \mathbb{R}(\mathbb{A}), \text{if} \Vdash_{\mathscr{C}}^{U} \Gamma, \text{then} \Vdash_{\mathscr{C}}^{\mathcal{S}(U)} \phi \quad \text{(Gen-Inf)}$$

This admits the kind of resource semantics we desire. Recall:

- $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes

 $\Gamma \Vdash_{\mathscr{B}}^{S(\cdot)} \phi \quad \text{iff} \quad \forall \mathscr{C} \supseteq \mathscr{B}, \forall U \in \mathbb{R}(\mathbb{A}), \text{if} \Vdash_{\mathscr{C}}^{U} \Gamma, \text{then} \Vdash_{\mathscr{C}}^{S(U)} \phi \quad \text{(Gen-Inf)}$

This admits the kind of resource semantics we desire. Recall:

- $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes
- *S*(·) is some 'contextual' collection of atomic resources available to the system

 $\Gamma \Vdash_{\mathscr{B}}^{S(\cdot)} \phi \quad \text{iff} \quad \forall \mathscr{C} \supseteq \mathscr{B}, \forall U \in \mathbb{R}(\mathbb{A}), \text{if} \Vdash_{\mathscr{C}}^{U} \Gamma, \text{then} \Vdash_{\mathscr{C}}^{S(U)} \phi \quad \text{(Gen-Inf)}$

This admits the kind of resource semantics we desire. Recall:

- $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes
- *S*(·) is some 'contextual' collection of atomic resources available to the system
- ℬ, ℭ are models of the systems that is, ⊢^U_ℭ Γ says that ℭ is a model of policy Γ when supplied with resource U.

 $\Gamma \Vdash_{\mathscr{B}}^{S(\cdot)} \phi \quad \text{iff} \quad \forall \mathscr{C} \supseteq \mathscr{B}, \forall U \in \mathbb{R}(\mathbb{A}), \text{if} \Vdash_{\mathscr{C}}^{U} \Gamma, \text{then} \Vdash_{\mathscr{C}}^{S(U)} \phi \quad \text{(Gen-Inf)}$

This admits the kind of resource semantics we desire. Recall:

- $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes
- *S*(·) is some 'contextual' collection of atomic resources available to the system
- ℬ, ℭ are models of the systems that is, ⊢^U_ℭ Γ says that ℭ is a model of policy Γ when supplied with resource U.

 $\Gamma \Vdash_{\mathscr{B}}^{\mathcal{S}(\cdot)} \phi \quad \text{iff} \quad \forall \mathscr{C} \supseteq \mathscr{B}, \forall U \in \mathbb{R}(\mathbb{A}), \text{if} \Vdash_{\mathscr{C}}^{U} \Gamma, \text{then} \Vdash_{\mathscr{C}}^{\mathcal{S}(U)} \phi \quad \text{(Gen-Inf)}$

This admits the kind of resource semantics we desire. Recall:

- $\blacksquare \ \phi$ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes
- *S*(·) is some 'contextual' collection of atomic resources available to the system
- ℬ, ℭ are models of the systems that is, ⊢^U_ℭ Γ says that ℭ is a model of policy Γ when supplied with resource U.

If policy Γ were to be executed with contextual resource $S(\cdot)$ based on the model \mathscr{B} , then the result state would satisfy φ .

Environment

describe each component C_i by a formula φ_i — this is its *policy*

- describe each component C_i by a formula φ_i this is its *policy*
- its model is given by a base \mathscr{B}_i and resources S such that $\Vdash_{\mathscr{B}_i}^S \varphi_i$

- describe each component C_i by a formula φ_i this is its *policy*
- Its model is given by a base \mathscr{B}_i and resources S such that $\Vdash_{\mathscr{B}_i}^S \varphi_i$
- model interfacing by a base & governing input/output

- describe each component C_i by a formula φ_i this is its *policy*
- its model is given by a base \mathscr{B}_i and resources S such that $\Vdash_{\mathscr{B}_i}^S \varphi_i$
- model *interfacing* by a base *C* governing input/output
- construct a model \mathscr{D} of the system by taking the union of the components, $\mathscr{D} := \mathscr{B}_1 \cup \ldots \cup \mathscr{B}_n \cup \mathscr{C}$

- describe each component C_i by a formula φ_i this is its *policy*
- its model is given by a base \mathscr{B}_i and resources S such that $\Vdash_{\mathscr{B}_i}^S \varphi_i$
- model *interfacing* by a base *C* governing input/output
- construct a model \mathscr{D} of the system by taking the union of the components, $\mathscr{D} := \mathscr{B}_1 \cup \ldots \cup \mathscr{B}_n \cup \mathscr{C}$

- describe each component C_i by a formula φ_i this is its *policy*
- its model is given by a base \mathscr{B}_i and resources S such that $\Vdash_{\mathscr{B}_i}^S \varphi_i$
- model *interfacing* by a base *C* governing input/output
- construct a model \mathscr{D} of the system by taking the union of the components, $\mathscr{D} := \mathscr{B}_1 \cup \ldots \cup \mathscr{B}_n \cup \mathscr{C}$

Remark. This approach to modelling is both *compositional* and *substitutional*.

Example: Airport Security modelled in BI

Resources: p (passport), t (ticket), h (hold-baggage), s_{hold} (security certificate), and s_{cabin} (security certificate)

Arriving with a valid ticket *t* and passport *p* is modelled by \mathscr{B} such that $\Vdash_{\mathscr{B}}^{p_{\mathfrak{F}}t} \varphi$ — for more details, see our paper.

Gheorghiu, Gu, Pym (UCL)

Inferentialist Resource Semantics

Example: Airport Security modelled in BI

Resources: p (passport), t (ticket), h (hold-baggage), s_{hold} (security certificate), and s_{cabin} (security certificate)

• Component Policies for l_1 , l_2 , l_3 : $\varphi_1 = p \rightarrow ((p \land t) * h)$, $\varphi_2 = h \rightarrow s_{hold}$, and $\varphi_3 = t \rightarrow s_{cabin}$

Arriving with a valid ticket *t* and passport *p* is modelled by \mathscr{B} such that $\Vdash_{\mathscr{B}}^{p_{\mathfrak{F}}t} \varphi$ — for more details, see our paper.

Gheorghiu, Gu, Pym (UCL)

Example: Airport Security modelled in BI

- Resources: p (passport), t (ticket), h (hold-baggage), s_{hold} (security certificate), and s_{cabin} (security certificate)
- Component Policies for l_1 , l_2 , l_3 : $\varphi_1 = p \rightarrow ((p \land t) * h)$, $\varphi_2 = h \rightarrow s_{\text{hold}}$, and $\varphi_3 = t \rightarrow s_{\text{cabin}}$
- **Combined Policy:** $\phi = \phi_1 \twoheadrightarrow (\phi_2 * \phi_3)$

Arriving with a valid ticket *t* and passport *p* is modelled by \mathscr{B} such that $\Vdash_{\mathscr{B}}^{p_{\mathfrak{F}}t} \varphi$ — for more details, see our paper.

Thesis

The paradigm of 'proof-theoretic semantics' provides an account of resource semantics that uniformly encompasses both the number-of-uses and sharing/separation interpretations of logics.

Table of Contents

1 Resource Semantics

- 2 Proof-theoretic Semantics
- 3 Inferentialist Resource Semantics

4 Conclusion

We desire a way to reason about system mathematically

- We desire a way to reason about system mathematically
- To this end, we use resource semantics that is, interpretation of aspects of logics in terms of aspects of systems

- We desire a way to reason about system mathematically
- To this end, we use resource semantics that is, interpretation of aspects of logics in terms of aspects of systems
- In this paper, we offer a uniform paradigm for resource semantics using modern techniques ...

- We desire a way to reason about system mathematically
- To this end, we use resource semantics that is, interpretation of aspects of logics in terms of aspects of systems
- In this paper, we offer a uniform paradigm for resource semantics using modern techniques ...
- ... namely, proof-theoretic semantics

- We desire a way to reason about system mathematically
- To this end, we use resource semantics that is, interpretation of aspects of logics in terms of aspects of systems
- In this paper, we offer a uniform paradigm for resource semantics using modern techniques ...
- ... namely, proof-theoretic semantics
- ... it has desirable features and satisfies several criteria for resource semantics — e.g., expresses both the dynamics and structure of systems

- We desire a way to reason about system mathematically
- To this end, we use resource semantics that is, interpretation of aspects of logics in terms of aspects of systems
- In this paper, we offer a uniform paradigm for resource semantics using modern techniques ...
- ... namely, proof-theoretic semantics
- ... it has desirable features and satisfies several criteria for resource semantics — e.g., expresses both the dynamics and structure of systems
- Future work: formalize the method and construct some useful models!